CDO Pricing Using Gaussian Mixture Model with Transformation of Loss Distribution

نویسندگان

  • David X. Li
  • Michael Liang
چکیده

We present a new approach to price CDOˆ2-type transactions consistently with the pricing of the underlying CDOs. We first present an extension to the current market standard model using a Gaussian mixture (GM) copula model instead of one parameter single Gaussian Copula model. It shows that GM broadly captures the correlation skew shown in the index tranche market, but not exactly and across time or across term structure. Then using an analogy to the option pricing for CDO tranche pricing we extract an implied loss distribution from the observed index tranche market or a set of bespoke pricing of the underlying baby portfolios. To strike a balance of matching the underlying baby CDO pricing and having a plausible economic correlation model to price CDOˆ2-type trades we create a loss distribution transformation for each baby CDO portfolio between the implied loss distribution from the index tranche market or bespoke pricing and the loss distribution from the GM model. This way, we can match the ∗The views expressed in this article are not necessarily those of Barclays Bank PLC or any of its affiliates. Please direct any comment to [email protected], phone 212-412-2551 and michaelhong.liang@barcap, phone 212-412-3592.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pricing and Hedging of Cdo-squared Tranches by Using a One Factor Lévy Model

This paper provides a comparison of the exponential copula Lévy model with the classical Gaussian copula model for the pricing of CDO-squared tranches. Several approximations of the recursive approach are considered: a full Monte Carlo approximation, a multivariate Normal approximation of the joint inner CDO loss distribution and a multivariate Poisson approximation of the joint number of defau...

متن کامل

Basket Default Swaps, CDO’s and Factor Copulas

We consider a factor approach to the pricing of basket credit derivatives and synthetic CDO tranches. Our purpose is to deal in a convenient way with dependent defaults for a large number of names. We provide semi-explicit expressions of the stochastic intensities of default times and pricing formulae for basket default swaps and CDO tranches. Two cases are studied in detail: mean-variance mixt...

متن کامل

Calculation of Portfolio Loss Distribution Given Default

Default loss distribution of corporate portfolios plays a crucial role in CDO tranche pricing, tracking error calculation and profit/loss assessment of corporation systems. This work gives an efficient algorithm to calculate the default loss distribution based on Hull-White probability bucketing approach and importance sampling method. The Gaussian copula model is assumed to calculate the condi...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Stein's method and zero bias transformation for CDO tranche pricing

We propose an original approximation method, which is based on the Stein’s method and the zero bias transformation, to calculate CDO tranches in the general factor framework. We establish first-order correction terms for the Gaussian and the Poisson approximations respectively and we estimate the approximation errors. The application to the CDOs pricing consists of combining the two approximati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005